分类 tokenize 下的文章

v2-3d4a7ff19c9c874dda20b8ecf8ade385_r.jpeg

一、 背景与基础

在使用GPT BERT模型输入词语常常会先进行tokenize ,tokenize具体目标与粒度是什么呢?tokenize也有许多类别及优缺点,这篇文章总结一下各个方法及实际案例。

tokenize的目标是把输入的文本流,切分成一个个子串,每个子串相对有完整的语义,便于学习embedding表达和后续模型的使用。

二、切分粒度

tokenize有三种粒度:word/subword/char

1.词粒度-word

词粒度的切分就跟人类平时理解文本原理一样,常常用一些工具来完成,例如英文的NLTK、SpaCy,中文的jieba、LTP等。举个栗子:

英文
live in New York ------> live / in / New York /

中文
在纽约生活 -----> 在 / 纽约 / 生活
词粒度的切分能够非常好地保留完整语义信息,但是如果出现拼写错误、英文中的缩写等情况,鲁棒性一般。另一方面,词切分会产生非常巨大的词表,而且这都不能确保不会出现out of vocabulary问题。

2.字粒度-char-字符粒度

字粒度最早应该是2015年Karpathy[1]提出,简单说英文就是以字母为单位(对于大小写不敏感的任务,甚至可以先转小写再切分),中文就是以字为单位,举个栗子,

英文
live in New York -----> l / i / v /e / i / n / N / e / w / Y / o / r /k

中文
在纽约生活 -----> 在 / 纽 / 约 / 生 / 活
可以看出,字粒度的切分很好地解决了词粒度的缺陷,鲁棒性增强、词表大大减小。但另一方面,也会带来一些麻烦:

「毫无意义」:一个字母或一个单字本质上并没有任何语义意义;
「增加输入计算压力」:减小词表的代价就是输入长度大大增加,从而输入计算变得更耗时耗力;
如果词粒度不理想,而且字粒度似乎也有自己的问题,那么还有什么替代方法呢?Here comes subword tokenization。

3.Subword粒度

我们需要的tokenization需要满足:

  • 它能够在不需要无限词汇表的情况下处理缺失的标记,即通过有限的已知单词列表来处理无限的潜在词汇。
  • 此外,我们不希望将所有内容分解为单个字符的额外复杂性,因为字符级别可能会丢失单词级别的一些含义和语义细节。

为此,我们需要考虑如何重新利用『小』单词来创建『大』单词。subword tokenization不转换最常见的单词,而是将稀有单词分解成有意义的子词单元。如果unfriendly被标记为一个稀有词,它将被分解为un-friendly-ly,这些单位都是有意义的单位,un的意思是相反的,friend是一个名词,ly则变成副词。这里的挑战是如何进行细分,我们如何获得un-friend-ly而不是unfr-ien-dly。

NLP最火的网红 Transformer 和 BERT 就是Subword的带盐人,来看个它们做tokenization的栗子,

I have a new GPU ----> [’i’, ’have’, ’a’, ’new’, ’gp’, ’##u’, ’.’]
subword粒度切分算法又有一下几种:

1.BPE
2.WordPiece
3.ULM(unigram LM)
4.Sentencepiece

参考:
1.https://cloud.tencent.com/developer/article/1865689
2.https://zhuanlan.zhihu.com/p/340473354